
Syllabus
 Module 1: Database system architecture Data Abstraction, Data

Independence, Data Definition Language (DDL), Data
Manipulation Language (DML). Data models: Entity-
relationship model, network model, relational and object
oriented Data models, integrity constraints, data manipulation
operations.

 Module 2: Relational query languages Relational algebra, Tuple
and domain relational calculus, SQL3, DDL and DML
constructs, Open source and Commercial DBMS - MYSQL,
ORACLE, DB2, SQL server. Relational database design: Domain
and data dependency, Armstrong's axioms, Normal forms,
Dependency preservation, Lossless design. Query processing
and optimization: Evaluation of relational algebra expressions,
Query equivalence, Join strategies, Query optimization
algorithms.

Syllabus Continue…
 Module 3: Storage strategies, Indices, B-trees, hashing.

 Module 4: Transaction processing Concurrency control,
ACID property, Serializability of scheduling, Locking and
timestamp based schedulers, Multi-version and optimistic
Concurrency Control schemes, Database recovery.

 Module 5: Database Security Authentication,
Authorization and access control, DAC, MAC and RBAC
models, Intrusion detection, SQL injection.

 Module 6: Advanced Topics Object oriented and object
relational databases, Logical databases, Web databases,
Distributed databases

Chapter 1: Introduction
 Purpose of Database Systems

 View of Data

 Data Models

 Data Definition Language

 Data Manipulation Language

 Transaction Management

 Storage Management

 Database Administrator

 Database Users

 Overall System Structure

Database Management System

 Collection of interrelated data
 Set of programs to access the data
 DBMS contains information about a particular enterprise
 DBMS provides an environment that is both convenient

and efficient to use.
 Database Applications:

 Banking: all transactions
 Airlines: reservations, schedules
 Universities: registration, grades
 Sales: customers, products, purchases
 Manufacturing: production, inventory, orders, supply chain
 Human resources: employee records, salaries, tax deductions

 Databases touch all aspects of our lives

Purpose of Database System
 In the early days, database applications were built

on top of file systems

 Drawbacks of using file systems to store data:

 Data redundancy and inconsistency
 Multiple file formats, duplication of information in

different files

 Difficulty in accessing data
 Need to write a new program to carry out each new task

 Data isolation — multiple files and formats

 Integrity problems
 Integrity constraints (e.g. account balance > 0) become

part of program code

 Hard to add new constraints or change existing ones

(Cont.)
 Drawbacks of using file systems (cont.)

 Atomicity of updates

 Failures may leave database in an inconsistent state with partial
updates carried out

 E.g. transfer of funds from one account to another should either
complete or not happen at all

 Concurrent access by multiple users

 Concurrent accessed needed for performance

 Uncontrolled concurrent accesses can lead to inconsistencies

 E.g. two people reading a balance and updating it at the same
time

 Security problems

 Database systems offer solutions to all the above problems

Levels of Abstraction
 Physical level describes how a record (e.g., customer) is

stored.

 Logical level: describes data stored in database, and the
relationships among the data.

type customer = record
name : string;
street : string;
city : integer;

end;

 View level: application programs hide details of data types.
Views can also hide information (e.g., salary) for security
purposes.

View of Data

An architecture for a database system

Instances and Schemas
 Similar to types and variables in programming languages

 Schema – the logical structure of the database

 e.g., the database consists of information about a set of customers and accounts and
the relationship between them)

 Analogous to type information of a variable in a program

 Physical schema: database design at the physical level

 Logical schema: database design at the logical level

 Instance – the actual content of the database at a particular point in time

 Analogous to the value of a variable

 Physical Data Independence – the ability to modify the physical schema
without changing the logical schema

 Applications depend on the logical schema

 In general, the interfaces between the various levels and components should be well
defined so that changes in some parts do not seriously influence others.

Data Models
 A collection of tools for describing

 data
 data relationships
 data semantics
 data constraints

 Entity-Relationship model

 Relational model

 Other models:
 object-oriented model
 semi-structured data models
 Older models: network model and hierarchical

model

Entity-Relationship Model
Example of schema in the entity-relationship model

Entity Relationship Model (Cont.)
 E-R model of real world

 Entities (objects)

 E.g. customers, accounts, bank branch

 Relationships between entities

 E.g. Account A-101 is held by customer Johnson

 Relationship set depositor associates customers with accounts

 Widely used for database design

 Database design in E-R model usually converted to
design in the relational model (coming up next) which
is used for storage and processing

Relational Model

 Example of tabular data in the relational model

customer-

name
Customer-

id

customer-

street

customer-

city
account-

number

Johnson

Smith

Johnson

Jones

Smith

192-83-7465

019-28-3746

192-83-7465

321-12-3123

019-28-3746

Alma

North

Alma

Main

North

Palo Alto

Rye

Palo Alto

Harrison

Rye

A-101

A-215

A-201

A-217

A-201

Attributes

A Sample Relational Database

Data Definition Language (DDL)

 Specification notation for defining the database schema
 E.g.

create table account (
account-number char(10),
balance integer)

 DDL compiler generates a set of tables stored in a data
dictionary

 Data dictionary contains metadata (i.e., data about data)
 database schema

 Data storage and definition language
 language in which the storage structure and access methods

used by the database system are specified

 Usually an extension of the data definition language

Data Manipulation Language (DML)
 Language for accessing and manipulating the data

organized by the appropriate data model

 DML also known as query language

 Two classes of languages

 Procedural – user specifies what data is required and
how to get those data

 Nonprocedural – user specifies what data is required
without specifying how to get those data

 SQL is the most widely used query language

SQL SQL: widely used non-procedural language
 E.g. find the name of the customer with customer-id 192-83-7465

select customer.customer-name
from customer
where customer.customer-id = ‘192-83-7465’

 E.g. find the balances of all accounts held by the customer with
customer-id 192-83-7465

select account.balance
from depositor, account
where depositor.customer-id = ‘192-83-7465’ and

depositor.account-number = account.account-
number

 Application programs generally access databases through one of
 Language extensions to allow embedded SQL

 Application program interface (e.g. ODBC/JDBC) which allow SQL
queries to be sent to a database

Database Users
 Users are differentiated by the way they expect to interact

with the system
 Application programmers – interact with system through

DML calls
 Sophisticated users – form requests in a database query

language
 Specialized users – write specialized database applications

that do not fit into the traditional data processing
framework

 Naïve users – invoke one of the permanent application
programs that have been written previously
 E.g. people accessing database over the web, bank tellers,

clerical staff

Database Administrator
 Coordinates all the activities of the database system;

the database administrator has a good understanding
of the enterprise’s information resources and needs.

 Database administrator's duties include:
 Schema definition

 Storage structure and access method definition

 Schema and physical organization modification

 Granting user authority to access the database

 Specifying integrity constraints

 Acting as liaison with users

 Monitoring performance and responding to changes in
requirements

Transaction Management
 A transaction is a collection of operations that

performs a single logical function in a database
application

 Transaction-management component ensures that the
database remains in a consistent (correct) state despite
system failures (e.g., power failures and operating
system crashes) and transaction failures.

 Concurrency-control manager controls the interaction
among the concurrent transactions, to ensure the
consistency of the database.

Storage Management
 Storage manager is a program module that provides

the interface between the low-level data stored in the
database and the application programs and queries
submitted to the system.

 The storage manager is responsible to the following
tasks:

 interaction with the file manager

 efficient storing, retrieving and updating of data

Overall System Structure

Application Architectures

Two-tier architecture: E.g. client programs using ODBC/JDBC to

communicate with a database

Three-tier architecture: E.g. web-based applications, and

applications built using “middleware”

